Equilibrium attractive properties of a class of multistep Runge-Kutta methods
نویسندگان
چکیده
The main purpose of this paper is to discuss the equilibrium attractive properties of a class of multistep Runge–Kutta methods for initial value problems of ordinary differential equations. Some algebraic conditions insuring the equilibrium attractivity are given, and some methods satisfying these algebraic conditions are constructed. Some numerical examples confirm our results. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Stability and B-convergence properties of multistep Runge-Kutta methods
This paper continues earlier work by the same author concerning the stability and B-convergence properties of multistep Runge-Kutta methods for the numerical solution of nonlinear stiff initial-value problems in a Hilbert space. A series of sufficient conditions and necessary conditions for a multistep Runge-Kutta method to be algebraically stable, diagonally stable, Bor optimally B-convergent ...
متن کاملConvergence results for multistep Runge - Kuttamethods
Recently Ch. Lubich proved convergence results for Runge-Kutta methods applied to stii mechanical systems. The present paper discusses the new ideas necessary to extend these results to general linear methods, in particular BDF and multistep Runge-Kutta methods. Stii mechanical systems arise in the modelling of mechanical systems containing strong springs and (or) elastic joints. A typical exam...
متن کاملHigh-order linear multistep methods with general monotonicity and boundedness properties
We consider linear multistep methods that possess general monotonicity and boundedness properties. Strict monotonicity, in terms of arbitrary starting values for the multistep schemes, is only valid for a small class of methods, under very stringent step size restrictions. This makes them uncompetitive with the strong-stability-preserving (SSP) Runge– Kutta methods. By relaxing these strict mon...
متن کاملBlock Runge-Kutta Methods for the Numerical Integration of Initial Value Problems in Ordinary Differential Equations
Block Runge-Kutta formulae suitable for the approximate numerical integration of initial value problems for first order systems of ordinary differential equations are derived. Considered in detail are the problems of varying both order and stepsize automatically. This leads to a class of variable order block explicit Runge-Kutta formulae for the integration of nonstiff problems and a class of v...
متن کاملEquilibrium States for Multistep Methods Department of Mathematics Equilibrium States for Multistep Methods
When the stepsize in non-stii ODE codes is restricted by stability, an uneven pattern of stepsizes with many step rejections is frequently observed. Results analysing this behaviour have been obtained for Runge-Kutta methods, leading to several papers attempting to improve stepsize control. It is shown here that a similar analysis can be carried out for mul-tistep methods. The explicit Adams 2-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 173 شماره
صفحات -
تاریخ انتشار 2006